Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Fungi (Basel) ; 10(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38392793

RESUMO

The analysis of the secretome allows us to identify the proteins, especially carbohydrate-active enzymes (CAZymes), secreted by different microorganisms cultivated under different conditions. The CAZymes are divided into five classes containing different protein families. Thermothelomyces thermophilus is a thermophilic ascomycete, a source of many glycoside hydrolases and oxidative enzymes that aid in the breakdown of lignocellulosic materials. The secretome analysis of T. thermophilus LMBC 162 cultivated with submerged fermentation using tamarind seeds as a carbon source revealed 79 proteins distributed between the five diverse classes of CAZymes: 5.55% auxiliary activity (AAs); 2.58% carbohydrate esterases (CEs); 20.58% polysaccharide lyases (PLs); and 71.29% glycoside hydrolases (GHs). In the identified GH families, 54.97% are cellulolytic, 16.27% are hemicellulolytic, and 0.05 are classified as other. Furthermore, 48.74% of CAZymes have carbohydrate-binding modules (CBMs). Observing the relative abundance, it is possible to state that only thirteen proteins comprise 92.19% of the identified proteins secreted and are probably the main proteins responsible for the efficient degradation of the bulk of the biomass: cellulose, hemicellulose, and pectin.

2.
Proteomics ; : e2300332, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238893

RESUMO

Nontuberculous Mycobacteria (NTM) are a group of emerging bacterial pathogens that have been identified in cystic fibrosis (CF) patients with microbial lung infections. The treatment of NTM infection in CF patients is challenging due to the natural resistance of NTM species to many antibiotics. Mycobacterium abscessus is one of the most common NTM species found in the airways of CF patients. In this study, we characterized the extracellular vesicles (EVs) released by drug-sensitive M. abscessus untreated or treated with clarithromycin (CLR), one of the frontline anti-NTM drugs. Our data show that exposure to CLR increases mycobacterial protein trafficking into EVs as well as the secretion of EVs in culture. Additionally, EVs released by CLR-treated M. abscessus increase M. abscessus resistance to CLR when compared to EVs from untreated M. abscessus. Proteomic analysis further indicates that EVs released by CLR-treated M. abscessus carry an increased level of 50S ribosomal subunits, the target of CLR. Taken together, our results suggest that EVs play an important role in M. abscessus resistance to CLR treatment.

3.
Geroscience ; 46(2): 2739-2754, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38159133

RESUMO

Aging has a significant impact on the immune system, leading to a gradual decline in immune function and changes in the body's ability to respond to bacterial infections. Non-tuberculous mycobacteria (NTM), also known as atypical mycobacteria or environmental mycobacteria, are commonly found in soil, water, and various environmental sources. While many NTM species are considered opportunistic pathogens, some can cause significant infections, particularly in individuals with compromised immune systems, such as older individuals. When mycobacteria enter the body, macrophages are among the first immune cells to encounter them and attempt to engulf mycobacteria through a process called phagocytosis. Some NTM species, including Mycobacterium avium (M. avium) can survive and replicate within macrophages. However, little is known about the interaction between NTM and macrophages in older individuals. In this study, we investigated the response of bone marrow-derived macrophage (BMMs) isolated from young (5 months) and old (25 months) mice to M. avium serotype 4, one of the main NTM species in patients with pulmonary NTM diseases. Our results demonstrated that BMMs from old mice have an increased level of intracellular iron and are more susceptible to M. avium serotype 4 infection compared to BMMs from young mice. The whole-cell proteomic analysis indicated a dysregulated expression of iron homeostasis-associated proteins in old BMMs regardless of mycobacterial infection. Deferoxamine, an iron chelator, significantly rescued mycobacterial killing and phagolysosome maturation in BMMs from old mice. Therefore, our data for the first time indicate that an intracellular iron accumulation improves NTM survival within macrophages from old mice and suggest a potential application of iron-chelating drugs as a host-directed therapy for pulmonary NTM infection in older individuals.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Proteômica , Humanos , Animais , Camundongos , Idoso , Infecções por Mycobacterium não Tuberculosas/microbiologia , Micobactérias não Tuberculosas/fisiologia , Macrófagos , Fagocitose
4.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37410397

RESUMO

Bovine respiratory disease (BRD) remains the greatest challenge facing the beef industry. Calves affected by BRD can manifest illness ranging from subclinical infection to acute death. In pathologies similar to BRD, extracellular histones have been implicated as major contributors to lung tissue damage. Histones are basic proteins responsible for DNA organization in cell nuclei, however when released extracellularly during cell injury or via neutrophil activation they become cytotoxic. Cattle suffering severe cases of BRD demonstrate reduced capacity to protect against the cytotoxic effects of histones, however, the protective mechanism(s) of serum remain(s) unknown. Therefore, the objective was to identify components within serum that contribute to protection against histone toxicity. Serum proteins from animals considered protective (P; N = 4) and nonprotective (NP; N = 4) against the toxic effects of histones were precipitated by the addition and incubation of exogenous histones. Proteins that interact with histones from both groups were isolated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and identified via label free "shotgun" proteomics. Sixteen candidate proteins increased by ≥2-fold change in P vs. NP animals were identified, with several associated with the complement system. A subsequent study was conducted to evaluate complement system activity and serum protective capacity against exogenous histones in feedlot heifers. Serum samples were collected from 118 heifer calves (BW at arrival = 229 ±â€…2.4 kg) at feedlot arrival. Animals were retrospectively assigned to groups consisting of: calves not requiring treatment with antibiotics for BRD (CONT; N = 80), calves treated once (1TRT; N = 21), calves treated twice (2TRT; N = 5), calves treated thrice (3TRT; N = 3), or calves that died from BRD within 1 wk of entering the feedlot (DA; N = 9). Serum from DA animals was less protective than CONT (P = 0.0005) animals against histone toxicity. Complement activity of DA animals was reduced compared to CONT (P = 0.0044) animals. Additionally, the use of both assays as a ratio resulted in increased ability to detect DA animals. Results suggest that cattle predisposed to severe cases of respiratory disease may have impaired complement activity presumably contributing to reduced protective capacity against histone toxicity.


Bovine respiratory disease (BRD) remains the leading cause of feedlot calf sickness and death. In respiratory disease affecting humans and mice, major tissue damage is caused by release of histones. Histones are proteins found in the nucleus of cells that condense DNA, however, cells that become damaged release histones extracellularly. Research has shown that calves with severe cases of BRD are less able to protect against the toxic effects of histones residing outside of the cell. It is speculated that components within the blood may interact with histones and confer protection from histone toxicity. This study evaluated serum from protective and nonprotective cattle against histone toxicity and identified 16 proteins that were elevated in protective animals. Several proteins were associated with the complement system of the innate immune system. To evaluate immune complement activity and protective capacity against histone toxicity, serum was collected from heifers at feedlot arrival. Calves suffering from a severe case of BRD demonstrated reduced capacity to protect against histone toxicity. Complement activity of calves severely affected with BRD was reduced as well. Results suggest that cattle susceptible to severe cases of BRD may have impaired complement activity likely contributing to reduced protective capacity against histone toxicity.


Assuntos
Complexo Respiratório Bovino , Doenças dos Bovinos , Doenças Respiratórias , Animais , Bovinos , Feminino , Histonas , Estudos Retrospectivos , Doenças dos Bovinos/prevenção & controle , Doenças Respiratórias/veterinária , Pulmão , Complexo Respiratório Bovino/prevenção & controle , Complexo Respiratório Bovino/tratamento farmacológico
5.
mSphere ; 8(2): e0057322, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36749044

RESUMO

Mycobacterium tuberculosis (Mtb) is transmitted through aerosols and primarily colonizes within the lung. The World Health Organization estimates that Mtb kills ~1.4 million people every year. A key aspect that makes Mtb such a successful pathogen is its ability to overcome iron limitation mounted by the host immune response. In our previous studies, we have shown that Mtb can utilize iron from heme, the largest source of iron in the human host, and that it uses two redundant heme utilization pathways. In this study, we show that the ESX-4 type VII secretion system (T7SS) is necessary for extracellular heme uptake into the Mtb cell through both heme utilization pathways. ESX-4 influences the secretion of the culture filtrate proteins Rv0125 and Rv1085c, which are also necessary for efficient heme utilization. We also discovered that deletion of the alternative sigma factor SigM significantly reduced Mtb heme utilization through both pathways and predict that SigM is a global positive regulator of core heme utilization genes of both pathways. Finally, we present the first direct evidence that some mycobacterial PPE (proline-proline-glutamate motif) proteins of the PPE protein family are pore-forming membrane proteins. Altogether, we identified core components of both Mtb Heme utilization pathways that were previously unknown and identified a novel channel-forming membrane protein of Mtb. IMPORTANCE M. tuberculosis (Mtb) is completely dependent on iron acquisition in the host to cause disease. The largest source of iron for Mtb in the human host is heme. Here, we show that the ancestral ESX-4 type VII secretion system is required for the efficient utilization of heme as a source of iron, which is an essential nutrient. This is another biological function identified for ESX-4 in Mtb, whose contribution to Mtb physiology is poorly understood. A most exciting finding is that some mycobacterial PPE (proline-proline-glutamate motif) proteins that have been implicated in the nutrient acquisition are membrane proteins that can form channels in a lipid bilayer. These observations have far-reaching implications because they support an emerging theme that PPE proteins can function as channel proteins in the outer mycomembrane for nutrient acquisition. Mtb has evolved a heme uptake system that is drastically different from all other known bacterial heme acquisition systems.


Assuntos
Mycobacterium tuberculosis , Sistemas de Secreção Tipo VII , Humanos , Sistemas de Secreção Tipo VII/genética , Sistemas de Secreção Tipo VII/metabolismo , Proteínas de Bactérias/metabolismo , Heme/metabolismo , Ferro/metabolismo , Proteínas de Membrana/metabolismo , Equipamento de Proteção Individual
6.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36638080

RESUMO

Previous studies investigated the biochemical basis of dark-cutting conditions at elevated muscle pH (above 6), but the molecular basis at slightly above normal pH (between 5.6 and 5.8) is still unclear. The objective was to determine protein and metabolite profiles to elucidate postmortem muscle darkening at slightly elevated pH. Loins were selected based on the criteria established in our laboratory before sample collections, such as pH less than 5.8, L* values (muscle lightness) less than 38, and not discounted by the grader (high-pH beef with dark color are discounted and not sold in retail stores). Six bright red loins (longissimus lumborum) at normal-pH (average pH = 5.57) and six dark-colored strip loins at slightly elevated pH (average pH = 5.70) from A maturity carcasses were obtained within 72-h postmortem from a commercial beef purveyor. Surface color, oxygen consumption, metmyoglobin reducing activity, protein, and metabolite profiles were determined on normal-pH and dark-colored steaks at slightly elevated pH. Enzymes related to glycogen metabolism and glycolytic pathways were more differently abundant than metabolites associated with these pathways. The results indicated that oxygen consumption and metmyoglobin reducing activity were greater (P < 0.05) in darker steaks than normal-pH steaks. Enzymes involved with glycogen catabolic pathways and glycogen storage disease showed lower abundance in dark beef. The tricarboxylic acid metabolite, aconitic acid, was overabundant in darker-colored beef than normal-pH beef, but glucose derivative metabolites were less abundant. The majority of glycogenolytic proteins and metabolites reported as overabundant in the previous dark-cutting studies at high pH (>6.4) also did not show significant differences in the current study. Therefore, our data suggest enzymes involved in glycogen metabolism, in part, create a threshold for muscle darkening than metabolites.


A bright cherry-red color beef is ideal during meat retail and carcass grading. Any deviation from a bright red color, such as dark red color, at the interface of the 12th and 13th rib-eye area leads to carcass discounts. Various studies have determined protein, metabolite, and mitochondrial profiles to understand the biochemical basis of dark-cutting beef (muscle pH greater than 6); however, limited knowledge is currently available on muscle darkening at a slightly elevated pH. Bright red loins at normal muscle pH and darker color loins at slightly elevated pH (not discounted by a grader) were collected 72-h postmortem from a commercial beef purveyor. Surface color, oxygen consumption, metmyoglobin reducing activity, protein, and metabolite profiles were determined on normal-pH and dark-colored steaks at slightly elevated pH. The results indicated that oxygen consumption and metmyoglobin reducing activity were greater in darker steaks than normal-pH steaks. Furthermore, the protein abundance profiles of enzymes related to glycogen metabolism and glycolytic pathways were more differently abundant than metabolites associated with these pathways. Understanding the factors involved in the occurrence of dark color steaks help to minimize losses due to discount carcasses.


Assuntos
Metamioglobina , Carne Vermelha , Bovinos , Animais , Metamioglobina/química , Músculo Esquelético/metabolismo , Carne Vermelha/análise , Proteômica , Cor , Glicogênio/metabolismo , Concentração de Íons de Hidrogênio , Carne
7.
Cells ; 11(13)2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35805147

RESUMO

The tumor suppressor TP53 is the most commonly mutated gene in human cancers, and iron is necessary for cancer cell growth and proliferation, but there is a significant gap in knowledge for how the two cooperate to affect cellular physiology. Elucidating this role is complicated, however, because each TP53 mutation subtype exhibits unique phenotypic responses to changes in iron availability. The goal of this work was to determine how cells expressing distinct TP53 mutation subtypes respond to iron restriction. Utilizing a reverse genetics approach, we generated eight isogenic cell lines that either lacked TP53 expression, expressed wild-type TP53, or expressed one of the six most common TP53 "hotspot" mutations. We then employed isobaric peptide labeling and mass spectrometry to quantitively measure changes in global protein expression, both in response to induction of mutant TP53 expression, and in response to iron chelation. Our findings indicate that mutant TP53-dependent sensitivities to iron restriction are not driven by differences in responsiveness to iron chelation, but more so by mutant TP53-dependent differences in cellular antioxidant and lipid handling protein expression. These findings reinforce the importance of distinguishing between TP53 mutation subtypes when investigating approaches to target mutant TP53. We also identify unique TP53-dependent perturbances in protein expression patterns that could be exploited to improve iron-targeted chemotherapeutic strategies.


Assuntos
Antioxidantes , Proteína Supressora de Tumor p53 , Homeostase , Humanos , Ferro/metabolismo , Quelantes de Ferro , Lipídeos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
8.
J Proteomics ; 265: 104637, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35688335

RESUMO

Mitochondria remain active in postmortem muscles and can influence meat color via oxygen consumption. Previous studies have shown that dark-cutting compared with normal-pH beef has greater mitochondrial protein and DNA content per gram of muscle tissue. However, the mechanism regulating mitochondrial content in dark-cutting vs. normal-pH beef is still unknown. Therefore, the objective was to compare mitochondrial proteomes of dark-cutting vs. normal-pH beef using LC-MS/MS-based proteomics and mitochondrial respiratory capacity using a Clark oxygen electrode. Dark-cutting compared with normal-pH beef has up-regulation of proteins involved in mitochondrial biogenesis, oxidative phosphorylation, intracellular protein transport, and cellular calcium ion homeostasis. Mitochondria isolated from dark-cutting phenotypes showed greater mitochondrial complex II respiration and uncoupled oxidative phosphorylation. However, mitochondrial membrane integrity and respiration at complexes I and IV were not different between normal-pH and dark-cutting beef. These results indicate that dark-cutting beef has greater mitochondrial biogenesis proteins than normal-pH beef, increasing mitochondrial content and contributing to dark-cutting beef. SIGNIFICANCE: Defective glycogen metabolism resulting from chronic stress before slaughter coupled with the greater mitochondrial protein and DNA content per gram of muscle tissue promotes muscle darkening in dark-cutting phenotypes in beef. However, the mechanistic basis for this occurrence in dark-cutting phenotypes is still unknown. In this work, we show that dark-cutting beef phenotype is caused, in part, as a consequence of over-proliferation of mitochondria. This is supported by the up-regulation of proteins involved in mitochondrial biogenesis, mitochondrial electron transport, calcium homeostasis, and fatty acid metabolism. Hence, the study of mitochondrial proteome changes provides a set of mitochondrial biogenesis proteins that could be used as potential candidate markers for detecting changes in pre-slaughter developmental events contributing to dark-cutting phenotypes in beef.


Assuntos
Carne Vermelha , Animais , Cálcio/metabolismo , Bovinos , Cromatografia Líquida , Cor , DNA/metabolismo , Metabolismo Energético , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Proteômica , Carne Vermelha/análise , Espectrometria de Massas em Tandem
9.
PLoS One ; 17(5): e0269037, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35622884

RESUMO

The type IIa family of receptor protein tyrosine phosphatases (RPTPs), including Lar, RPTPσ and RPTPδ, are well-studied in coordinating actin cytoskeletal rearrangements during axon guidance and synaptogenesis. To determine whether this regulation is conserved in other tissues, interdisciplinary approaches were utilized to study Lar-RPTPs in the Drosophila musculature. Here we find that the single fly ortholog, Drosophila Lar (Dlar), is localized to the muscle costamere and that a decrease in Dlar causes aberrant sarcomeric patterning, deficits in larval locomotion, and integrin mislocalization. Sequence analysis uncovered an evolutionarily conserved Lys-Gly-Asp (KGD) signature in the extracellular region of Dlar. Since this tripeptide sequence is similar to the integrin-binding Arg-Gly-Asp (RGD) motif, we tested the hypothesis that Dlar directly interacts with integrin proteins. However, structural analyses of the fibronectin type III domains of Dlar and two vertebrate orthologs that include this conserved motif indicate that this KGD tripeptide is not accessible and thus unlikely to mediate physical interactions with integrins. These results, together with the proteomics identification of basement membrane (BM) proteins as potential ligands for type IIa RPTPs, suggest a complex network of protein interactions in the extracellular space that may mediate Lar function and/or signaling in muscle tissue.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Integrinas/metabolismo , Proteínas de Membrana/metabolismo , Músculos/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases Semelhantes a Receptores , Transdução de Sinais
10.
Insect Biochem Mol Biol ; 144: 103762, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35395380

RESUMO

Phenoloxidase (PO) is a crucial component of the insect immune response against microbial infection. In the tobacco hornworm Manduca sexta, PO is generated from its precursor proPO by prophenoloxidase activating proteases (PAPs) in the presence of two noncatalytic serine protease homologs (SPHs). cDNA cloning and genome analysis indicate that SPH1a (formerly known as SPH1), SPH1b, SPH4, SPH101, and SPH2 contain a clip domain, a linker, and a protease-like domain (PLD). The first 22 residues of the SPH1b, SPH4, and SPH101 PLDs are identical, and differ from SPH1a only at position 4, Thr154 substituted with Asn154 in SPH1a. While the sequence from Edman degradation was used to establish PAP cofactor as a high Mr complex of SPH1a and SPH2, this assignment needed further validation, especially because SPH1b mRNA levels are much higher than SPH1a's and better correlate with SPH2 transcription. Thus, here we determined expression profiles of these SPH genes in different tissues from various developmental stages using highly specific primers. High levels of SPH1b and SPH2 proteins, low SPH4, and no SPH1a or SPH101 were detected in hemolymph from larvae in the feeding, wandering and bar stages, pupae, and adults by targeted LC-MS/MS analysis, based on unique peptides from the trypsin-treated SPHs. We expressed the five proSPHs in baculovirus-infected Sf9 cells for use as standards to identify and quantify their counterparts in plasma samples. Moreover, we tested their cleavage by PAP3 and efficacy of the SPH1a, 1b, 4, and 101 as SPH2 partners in PAP3-mediated proPO activation. PAP3 processed proSPH1b and 101 more readily than proSPH1a and 4; PAP3 activated proPO more efficiently in the presence of SPH2 with SPH101 or SPH1b than with SPH1a or SPH4. These results generally agree with their order of appearance or sequence similarity: SPH101 > SPH1b (98%) > SPH1a (90%) > SPH4 (83%). In other words, likely due to positive selection, products of the newly duplicated genes (SPH1b and SPH101) are more favorable substrates of PAP3 and better SPH2 partners in forming a high Mr cofactor than SPH1a or SPH4 is. Electrophoresis on native gel and immunoblot analysis further indicated that SPH101 or 1b form high Mr complexes more readily than SPH1a or 4 does. In comparison, SPH2 showed a small mobility decrease and then increase on native gel after PAP3 cleavage at the first site. Since the natural cofactor in bar-stage hemolymph is complexes of SPH1 and 2 with an average Mr of 790 kDa, PAP3-activated SPH2 may associate with the higher Mr SPH1b scaffolds to form super-complexes. Their structures and formation in relation to cleavage of SPH1b at different sites await further exploration.


Assuntos
Manduca , Animais , Anquirinas/deficiência , Catecol Oxidase/metabolismo , Cromatografia Líquida , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Hemolinfa/metabolismo , Proteínas de Insetos/metabolismo , Manduca/metabolismo , Monofenol Mono-Oxigenase , Serina Endopeptidases/genética , Serina Proteases/genética , Serina Proteases/metabolismo , Esferocitose Hereditária , Espectrometria de Massas em Tandem
11.
Exp Eye Res ; 213: 108846, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34801534

RESUMO

PURPOSE: Diabetic retinopathy is a vision-threatening complication of diabetes characterized by endothelial injury and vascular dysfunction. The loss of the endothelial glycocalyx, a dynamic layer lining all endothelial cells, contributes to several microvascular pathologies, including an increase in vascular permeability, leukocyte plugging, and capillary occlusion, and may drive the progression of retinopathy. Previously, a significant decrease in glycocalyx thickness has been observed in diabetic retinas. However, the effects of diabetes on specific components of the retinal glycocalyx have not yet been studied. Therefore, the aim of our study was to investigate changes in synthesis, expression, and shedding of retinal glycocalyx components induced by hyperglycemia, which could provide a novel therapeutic target for diabetic retinopathy. METHODS: Primary rat retinal microvascular endothelial cells (RRMECs) were grown under normal glucose (5 mM) or high-glucose (25 mM) conditions for 6 days. The mRNA and protein levels of the glycocalyx components were examined using qRT-PCR and Western blot analysis, respectively. Further, mass spectrometry was used to analyze protein intensities of core proteins. In addition, the streptozotocin-induced Type 1 diabetic rat model was used to study changes in the expression of the retinal glycocalyx in vivo. The shedding of the glycocalyx was studied in both culture medium and in plasma using Western blot analysis. RESULTS: A significant increase in the shedding of syndecan-1 and CD44 was observed both in vitro and in vivo under high-glucose conditions. The mRNA levels of syndecan-3 were significantly lower in the RRMECs grown under high glucose conditions, whereas those of syndecan-1, syndecan-2, syndecan-4, glypican-1, glypican-3, and CD44 were significantly higher. The protein expression of syndecan-3 and glypican-1 in RRMECs was reduced considerably following exposure to high glucose, whereas that of syndecan-1 and CD44 increased significantly. In addition, mass spectrometry data also suggests a significant increase in syndecan-4 and a significant decrease in glypican-3 protein levels with high glucose stimulation. In vivo, our data also suggest a significant decrease in the mRNA transcripts of syndecan-3 and an increase in mRNA levels of glypican-1 and CD44 in the retinas of diabetic rats. The diabetic rats exhibited a significant reduction in the retinal expression of syndecan-3 and CD44. However, the expression of syndecan-1 and glypican-1 increased significantly in the diabetic retina. CONCLUSIONS: One of the main findings of our study was the considerable diversity of glucose-induced changes in expression and shedding of various components of endothelial glycocalyx, for example, increased endothelial and retinal syndecan-1, but decreased endothelial and retinal syndecan-3. This indicates that the reported decrease in the retinal glycocalyx in diabetes in not a result of a non-specific shedding mechanism. Moreover, mRNA measurements indicated a similar diversity, with increases in endothelial and/or retinal levels of syndecan-1, glypican-1, and CD44, but a decrease for syndecan-3, with these increases in mRNA potentially a compensatory reaction to the overall loss of glycocalyx.


Assuntos
Retinopatia Diabética/metabolismo , Glicocálix/metabolismo , Hiperglicemia/metabolismo , Retina/metabolismo , Animais , Glicemia/metabolismo , Western Blotting , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Ensaio de Imunoadsorção Enzimática , Glucose/farmacologia , Glipicanas/metabolismo , Receptores de Hialuronatos/metabolismo , Insulina/sangue , Masculino , Espectrometria de Massas , RNA Mensageiro/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Vasos Retinianos/citologia , Sindecanas/metabolismo
12.
J Proteomics ; 232: 104016, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33059087

RESUMO

Dark-cutting beef is a condition in which beef fails to have a characteristic bright-red color when the cut surface is exposed to oxygen. However, the mechanistic basis for this occurrence is not clear. Protein expression profiles were compared between dark-cutting and normal-pH beef using LC-MS/MS-based proteomics. Mass spectrometry analysis identified 1162 proteins in the proteomes of dark-cutting and normal-pH beef. Of these, 92 proteins had significant changes in protein abundance between dark-cutting versus normal-pH beef. In dark-cutting beef, 25 proteins were down-regulated, including enzymes related to glycogen metabolism, glucose homeostasis, denovo synthesis of adenosine monophosphate (AMP), and glycogen phosphorylase activity. In comparison, 27 proteins were up-regulated in dark-cutting beef related to oxidation-reduction processes, muscle contraction, and oxidative phosphorylation. Down-regulation of glycogenolytic proteins suggests decreased glycogen mobilization and utilization, while the up-regulation of mitochondrial transport chain proteins indicates a greater capacity to support mitochondrial respiration in dark-cutting beef. These results showed that changes in proteins involved in glycogenolysis and mitochondrial electron transport would promote the development of high-pH and greater oxygen consumption, respectively; thus limiting myoglobin oxygenation in dark-cutting beef. SIGNIFICANCE: The current understanding indicates that defective glycolysis causes less carbon flow, leading to less postmortem lactic acid formation and elevated muscle pH in dark-cutting beef. However, to the best of our knowledge, limited research has evaluated how changes in glycolytic and mitochondrial protein abundance regulate postmortem muscle acidification and oxygen consumption in dark-cutting beef. We utilized a shotgun proteomics approach to elucidate potential differences in protein profiles between dark-cutting versus normal-pH beef that may influence differences in postmortem metabolism and muscle surface color characteristics. Our study shows that down-regulation of glycolgenolytic and IMP/AMP biosynthetic proteins results in elevated postmortem muscle pH in dark-cutting beef. In addition, the up-regulation of mitochondrial protein content coupled with the higher muscle pH are conducive factors for enhanced oxygen consumption and less myoglobin oxygenation, contributing to a dark meat color typically associated with dark-cutting beef.


Assuntos
Carne Vermelha , Animais , Bovinos , Cromatografia Líquida , Cor , Glicólise , Homeostase , Concentração de Íons de Hidrogênio , Carne/análise , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Mudanças Depois da Morte , Carne Vermelha/análise , Espectrometria de Massas em Tandem
13.
J Nutr Biochem ; 88: 108542, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33129969

RESUMO

Hypothalamic inflammation has been linked to various aspects of central metabolic dysfunction and diseases in humans, including hyperphagia, altered energy expenditure, and obesity. We previously reported that loss of ß-carotene oxygenase 2 (BCO2), a mitochondrial inner membrane protein, causes the alteration of the hypothalamic metabolome, low-grade inflammation, and an increase in food intake in mice at an early age, e.g., 3-6 weeks. Here, we determined the extent to which the deficiency of BCO2 induces hypothalamic inflammation in BCO2 knockout mice. Mitochondrial proteomics, electron microscopy, and immunoblotting were used to assess the changes in hypothalamic mitochondrial dynamics and mitochondrial DNA sensing and signaling. The results showed that deficiency of BCO2 altered hypothalamic mitochondrial proteome and respiratory supercomplex assembly by enhancing the expression of NADH:ubiquinone oxidoreductase subunit A11 protein and improved cardiolipin synthesis. BCO2 deficiency potentiated mitochondrial fission but suppressed mitophagy and mitochondrial biogenesis. Furthermore, deficiency of BCO2 resulted in inactivation of mitochondrial MnSOD enzyme, excessive production of reactive oxygen species, and elevation of protein levels of stimulator of interferon genes (STING) and interferon regulatory factor 3 (IRF3) in the hypothalamus. The data suggest that BCO2 is essential for hypothalamic mitochondrial dynamics. BCO2 deficiency induces mitochondrial fragmentation and mitochondrial oxidative stress, which may lead to mitochondrial DNA release into the cytosol and subsequently sensing by activation of the STING-IRF3 signaling pathway in the mouse hypothalamus.


Assuntos
Dioxigenases/deficiência , Hipotálamo/metabolismo , Inflamação/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Animais , DNA Mitocondrial/metabolismo , Dioxigenases/metabolismo , Metabolismo Energético , Humanos , Masculino , Metaboloma , Camundongos , Camundongos Knockout , Dinâmica Mitocondrial , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , beta Caroteno/metabolismo
14.
Front Vet Sci ; 7: 308, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32596266

RESUMO

Endocrinopathic laminitis is pathologically similar to the multi-organ dysfunction and peripheral neuropathy found in human patients with metabolic syndrome. Similarly, endocrinopathic laminitis has been shown to partially result from vascular dysfunction. However, despite extensive research, the pathogenesis of this disease is not well elucidated and laminitis remains without an effective treatment. Here, we sought to identify novel proteins and pathways underlying the development of equine endocrinopathic laminitis. Healthy Standardbred horses (n = 4/group) were either given an electrolyte infusion, or a 48-h euglycemic-hyperinsulinemic clamp. Cardiac and lamellar tissues were analyzed by mass spectrometry (FDR = 0.05). All hyperinsulinemic horses developed laminitis despite being previously healthy. We identified 514 and 709 unique proteins in the cardiac and lamellar proteomes, respectively. In the lamellar tissue, we identified 14 proteins for which their abundance was significantly increased and 13 proteins which were significantly decreased in the hyperinsulinemic group as compared to controls. These results were confirmed via real-time reverse-transcriptase PCR. A STRING analysis of protein-protein interactions revealed that these increased proteins were primarily involved in coagulation and complement cascades, platelet activity, and ribosomal function, while decreased proteins were involved in focal adhesions, spliceosomes, and cell-cell matrices. Novel significant differentially expressed proteins associated with hyperinsulinemia-induced laminitis include talin-1, vinculin, cadherin-13, fibrinogen, alpha-2-macroglobulin, and heat shock protein 90. In contrast, no proteins were found to be significantly differentially expressed in the heart of hyperinsulinemic horses compared to controls. Together, these data indicate that while hyperinsulinemia induced, in part, microvascular damage, complement activation, and ribosomal dysfunction in the lamellae, a similar effect was not seen in the heart. In brief, this proteomic investigation of a unique equine model of hyperinsulinemia identified novel proteins and signaling pathways, which may lead to the discovery of molecular biomarkers and/or therapeutic targets for endocrinopathic laminitis.

15.
Antibiotics (Basel) ; 8(4)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816949

RESUMO

Tea tree oil (TTO) is hypothesized to kill bacteria by indiscriminately denaturing membrane and protein structures. A Staphylococcus aureus small colony variant (SCV) selected with TTO (SH1000-TTORS-1) demonstrated slowed growth, reduced susceptibility to TTO, a diminutive cell size, and a thinned cell wall. Utilizing a proteomics and metabolomics approach, we have now revealed that the TTO-selected SCV mutant demonstrated defective fatty acid synthesis, an alteration in the expression of genes and metabolites associated with central metabolism, the induction of a general stress response, and a reduction of proteins critical for active growth and translation. SH1000-TTORS-1 also demonstrated an increase in amino acid accumulation and a decrease in sugar content. The reduction in glycolytic pathway proteins and sugar levels indicated that carbon flow through glycolysis and gluconeogenesis is reduced in SH1000-TTORS-1. The increase in amino acid accumulation coincides with the reduced production of translation-specific proteins and the induction of proteins associated with the stringent response. The decrease in sugar content likely deactivates catabolite repression and the increased amino acid pool observed in SH1000-TTORS-1 represents a potential energy and carbon source which could maintain carbon flow though the tricarboxylic acid (TCA) cycle. It is noteworthy that processes that contribute to the production of the TTO targets (proteins and membrane) are reduced in SH1000-TTORS-1. This is one of a few studies describing a mechanism that bacteria utilize to withstand the action of an antiseptic which is thought to inactivate multiple cellular targets.

16.
Methods Mol Biol ; 1709: 139-162, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29177657

RESUMO

Mass spectrometry assays demonstrate that Hsp90 inhibitors alter the expression of approximately one-quarter of the assayable proteome in mammalian cells. These changes are extraordinarily robust and reproducible, making "proteomics profiling" the gold standard for validating the effects of new Hsp90 inhibitors on cultured cells. Proteomics assays can also suggest novel hypotheses regarding drug mechanisms. To assist investigators in adopting this approach, this Chapter provides detailed protocols for conducting simple proteomics assays of Hsp90 inhibition. The protocols present a robust label-free approach that utilizes pre-fractionation of protein samples by SDS-PAGE, thereby providing reasonably good penetration into the proteome while addressing common issues with sample quality. The actual programming and operation of liquid chromatography-tandem mass spectrometers is not covered, but expectations for achievable performance are discussed, as are alternative approaches, common challenges, and software for data analysis.


Assuntos
Cromatografia Líquida/métodos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteoma/genética , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Células Cultivadas , Eletroforese em Gel de Poliacrilamida/métodos , Regulação da Expressão Gênica , Humanos , Proteoma/análise , Proteoma/efeitos dos fármacos
17.
Chem Biol Interact ; 275: 86-94, 2017 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-28756151

RESUMO

We previously reported that recombinant human butyrylcholinesterase (rhBChE) complexed with a series of copolymers of poly-l-lysine (PLL) with grafted (polyethylene) glycol (PEG) (i.e., PLL-g-PEG) showed reduced catalytic activity but relatively similar concentration-dependent inactivation of the organophosphorus inhibitor paraoxon. Herein, we compared the kinetics of catalysis (using butyrylthiocholine as the substrate) and inhibition (using four different inhibitors) of free and copolymer-complexed rhBChE. Using scanning electron microscopy, polyionic complexes of rhBChE with three different PLL-g-PEG copolymers (based on PLL size) appeared as spheroid-shaped particles with relatively similar particle sizes (median diameter = 35 nm). Relatively similar particle sizes were also noted using dynamic light scattering (mean = 26-35 nm). The three copolymer-complexed enzymes exhibited reduced kcat (30-33% reduction), but no significant changes in Km. Inhibitory potency (as reflected by the bimolecular rate constant, ki) was similar among the free and copolymer-complexed enzymes when paraoxon was the inhibitor, whereas statistically significant reductions in ki (16-60%) were noted with the other inhibitors. Sensitivity to inactivation by proteases and heat was also compared. Copolymer-complexed enzymes showed lesser time-dependent inactivation by the proteases trypsin and pronase and by heat compared to the free enzyme. Understanding the unique properties of PLL-g-PEG-BChE complexes may lead to enhanced approaches for use of BChE and other protein bioscavengers.


Assuntos
Butirilcolinesterase/metabolismo , Peptídeo Hidrolases/metabolismo , Polietilenoglicóis/química , Polilisina/análogos & derivados , Biocatálise , Butirilcolinesterase/química , Butirilcolinesterase/genética , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Ativação Enzimática/efeitos dos fármacos , Ensaios Enzimáticos , Temperatura Alta , Humanos , Cinética , Microscopia Eletrônica de Varredura , Paraoxon/química , Paraoxon/metabolismo , Tamanho da Partícula , Polilisina/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
18.
Poult Sci ; 96(8): 2992-2999, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28499042

RESUMO

White Striping (WS) and Woody Breast (WB) are 2 conditions that adversely affect consumer acceptance as well as quality of poultry meat and meat products. Both WS and WB are characterized with degenerative myopathic changes. Previous studies showed that WS and WB in broiler fillets could result in higher ultimate pH, increased drip loss, and decreased marinade uptake. The main objective of the present study was to compare the proteomic profiles of muscle tissue (n = 5 per group) with either NORM (no or few minor myopathic lesions) or SEV (with severe myopathic changes). Proteins were extracted from these samples and analyzed using a hybrid LTQ-OrbitrapXL mass spectrometer (LC-MS/MS). Over 800 proteins were identified in the muscle samples, among which 141 demonstrated differential (P < 0.05) expression between NORM and SEV. The set of differentially (P < 0.05) expressed proteins was uploaded to Ingenuity Pathway Analysis® (IPA) software to determine the associated biological networks and pathways. The IPA analysis showed that eukaryotic initiation factor-2 (eIF-2) signaling, mechanistic target of rapamycin (mTOR) signaling, as well as regulation of eIF4 and p70S6K signaling were the major canonical pathways up-regulated (P < 0.05) in SEV muscle compared to NORM. The up-regulation of these pathways indicate an increase in protein synthesis which could be part of the rapid growth as well as cellular stress associated with ongoing muscle degeneration and the attempt to repair tissue damage in SEV birds. Furthermore, IPA analysis revealed that glycolysis and gluconeogenesis were the major down-regulated (P < 0.05) canonical pathways in SEV with respect to NORM muscle. Down-regulation of these pathways could be the reason for higher ultimate pH seen in SEV muscle samples indicating reduced glycolytic potential. In conclusion, comparison of proteomic profiles of NORM and SEV muscle samples showed differences in protein profile which explains some of the observed differences in meat quality parameters. Future studies based on these differences could provide valuable insights into various cellular changes and identification of biomarkers related to WS and WB.


Assuntos
Proteínas Aviárias/metabolismo , Metabolismo dos Carboidratos , Galinhas , Carne/análise , Doenças Musculares/veterinária , Doenças das Aves Domésticas/patologia , Animais , Doenças Musculares/etiologia , Doenças Musculares/patologia , Doenças das Aves Domésticas/etiologia , Proteoma , Proteômica
19.
Mol Nutr Food Res ; 61(5)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27991717

RESUMO

SCOPE: ß,ß-Carotene-9',10'-dioxygenase 2 (BCO2) is a carotenoid cleavage enzyme localized to the inner mitochondrial membrane in mammals. This study was aimed to assess the impact of genetic ablation of BCO2 on hepatic oxidative stress through mitochondrial function in mice. METHODS AND RESULTS: Liver samples from 6-wk-old male BCO2-/- knockout (KO) and isogenic wild-type (WT) mice were subjected to proteomics and functional activity assays. Compared to the WT, KO mice consumed more food (by 18%) yet displayed significantly lower body weight (by 12%). Mitochondrial proteomic results demonstrated that loss of BCO2 was associated with quantitative changes of the mitochondrial proteome mainly shown by suppressed expression of enzymes and/or proteins involved in fatty acid ß-oxidation, the tricarboxylic acid cycle, and the electron transport chain. The mitochondrial basal respiratory rate, proton leak, and electron transport chain complex II capacity were significantly elevated in the livers of KO compared to WT mice. Moreover, elevated reactive oxygen species and increased mitochondrial protein carbonylation were also demonstrated in liver of KO mice. CONCLUSIONS: Loss of BCO2 induces mitochondrial hyperactivation, mitochondrial stress, and changes of the mitochondrial proteome, leading to mitochondrial energy insufficiency. BCO2 appears to be critical for proper hepatic mitochondrial function.


Assuntos
Dioxigenases/genética , Mitocôndrias Hepáticas/patologia , Estresse Oxidativo , Animais , Dioxigenases/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/genética , Carbonilação Proteica , Proteoma/genética , Espécies Reativas de Oxigênio/metabolismo
20.
Pathogens ; 5(2)2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27196934

RESUMO

The ability of Listeria monocytogenes to adhere and form biofilms leads to persistence in food processing plants and food-associated listeriosis. The role of specific surface proteins as adhesins to attach Listeria cells to various contact surfaces has not been well characterized to date. In prior research comparing different methods for surface protein extraction, the Ghost urea method revealed cleaner protein content as verified by the least cytoplasmic protein detected in surface extracts using LC-MS/MS. The same technique was utilized to extract and detect surface proteins among two surface-adherent phenotypic strains of L. monocytogenes (i.e., strongly and weakly adherent). Of 640 total proteins detected among planktonic and sessile cells, 21 protein members were exclusively detected in the sessile cells. Relative LC-MS/MS detection and quantification of surface-extracted proteins from the planktonic weakly adherent (CW35) and strongly adherent strains (99-38) were examined by protein mass normalization of proteins. We found that L. monocytogenes 99-38 exhibited a total of 22 surface proteins that were over-expressed: 11 proteins were detected in surface extracts of both sessile and planktonic 99-38 that were ≥5-fold over-expressed while another 11 proteins were detected only in planktonic 99-38 cells that were ≥10-fold over-expressed. Our results suggest that these protein members are worthy of further investigation for their involvement as surface adhesins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA